rocket_league.math
A set of useful mathematical operations.
Functions
|
Returns the Euclidean distance between two vectors. |
|
Returns the vector projection of a vector a onto another vector b. |
|
Returns the scalar projection of a vector a onto another vector b. |
|
Returns the magnitude of a vector. |
|
Returns a unit vector with the same direction as the input vector. |
|
Computes the cosine similarity between two vectors. |
|
Converts a quaternion to Euler angles. |
|
Converts a quaternion to a rotation matrix. |
|
Converts a rotation matrix to a quaternion. |
|
Converts Euler angles to a rotation. |
|
Generates a random 3-dimensional unit vector. |
|
Generates a random 3-dimensional vector with a size between 0 and max_norm. |
Module Contents
- rocket_league.math.euclidean_distance(x: numpy.ndarray, y: numpy.ndarray) float
Returns the Euclidean distance between two vectors.
- Parameters:
x – A numpy array of size n.
y – A numpy array of size n.
- Returns:
A float representing the distance between the two vectors.
- rocket_league.math.vector_projection(a: numpy.ndarray, b: numpy.ndarray) numpy.ndarray
Returns the vector projection of a vector a onto another vector b.
- Parameters:
a – A numpy array of size n.
b – A numpy array of size n.
- Returns:
A numpy array of size n representing the vector projection.
- rocket_league.math.scalar_projection(a: numpy.ndarray, b: numpy.ndarray) float
Returns the scalar projection of a vector a onto another vector b.
- Parameters:
a – A numpy array of size n.
b – A numpy array of size n.
- Returns:
A float representing the scalar projection.
- rocket_league.math.magnitude(vec: numpy.ndarray) float
Returns the magnitude of a vector.
- Parameters:
vec – A numpy array of size n.
- Returns:
A float representing the magnitude of the vector.
- rocket_league.math.normalize(vec: numpy.ndarray)
Returns a unit vector with the same direction as the input vector.
- Parameters:
vec – A numpy array of size n.
- Returns:
A numpy array of size n.
- rocket_league.math.cosine_similarity(a: numpy.ndarray, b: numpy.ndarray) float
Computes the cosine similarity between two vectors.
- Parameters:
a – A numpy array of size n.
b – A numpy array of size n.
- Returns:
A float representing the cosine similarity.
- rocket_league.math.quat_to_euler(quat: numpy.ndarray) numpy.ndarray
Converts a quaternion to Euler angles.
- Parameters:
quat – A numpy array of size 4 representing the quaternion.
- Returns:
A numpy array of size 3 representing the pitch, yaw, and roll angles.
- rocket_league.math.quat_to_rot_mtx(quat: numpy.ndarray) numpy.ndarray
Converts a quaternion to a rotation matrix.
- Parameters:
quat – A numpy array of size 4 representing the quaternion.
- Returns:
A numpy array of size 3x3 representing the rotation matrix.
- rocket_league.math.rotation_to_quaternion(m: numpy.ndarray) numpy.ndarray
Converts a rotation matrix to a quaternion.
- Parameters:
m – A numpy array of size 3x3 representing the rotation matrix.
- Returns:
A numpy array of size 4 representing the quaternion.
- rocket_league.math.euler_to_rotation(pyr: numpy.ndarray) numpy.ndarray
Converts Euler angles to a rotation.
- Parameters:
pyr – A numpy array of size 3 representing the pitch, yaw, and roll angles.
- Returns:
A numpy array of size 3x3 representing the rotation matrix.
- rocket_league.math.rand_uvec3(rng: numpy.random.Generator = np.random) numpy.ndarray
Generates a random 3-dimensional unit vector.
- Parameters:
rng – The random number generator to use.
- Returns:
A numpy array of size 3.
- rocket_league.math.rand_vec3(max_norm: float, rng: numpy.random.Generator = np.random) numpy.ndarray
Generates a random 3-dimensional vector with a size between 0 and max_norm.
- Parameters:
max_norm – The maximum norm of the vector.
rng – The random number generator to use.
- Returns:
A numpy array of size 3.