rocket_league.action_parsers ============================ .. py:module:: rocket_league.action_parsers Submodules ---------- .. toctree:: :maxdepth: 1 /autoapi/rocket_league/action_parsers/lookup_table_action/index /autoapi/rocket_league/action_parsers/repeat_action/index Classes ------- .. autoapisummary:: rocket_league.action_parsers.LookupTableAction rocket_league.action_parsers.RepeatAction Package Contents ---------------- .. py:class:: LookupTableAction Bases: :py:obj:`rlgym.api.ActionParser`\ [\ :py:obj:`rlgym.api.AgentID`\ , :py:obj:`numpy.ndarray`\ , :py:obj:`numpy.ndarray`\ , :py:obj:`rlgym.rocket_league.api.GameState`\ , :py:obj:`Tuple`\ [\ :py:obj:`str`\ , :py:obj:`int`\ ]\ ] World-famous discrete action parser which uses a lookup table to reduce the number of possible actions from 1944 to 90 .. py:attribute:: _lookup_table .. py:method:: get_action_space(agent: rlgym.api.AgentID) -> Tuple[str, int] Function that returns the action space type. It will be called during the initialization of the environment. :return: The type of the action space .. py:method:: reset(agents: List[rlgym.api.AgentID], initial_state: rlgym.rocket_league.api.GameState, shared_info: Dict[str, Any]) -> None Function to be called each time the environment is reset. :param agents: List of AgentIDs for which this ActionParser will receive actions :param initial_state: The initial state of the reset environment. :param shared_info: A dictionary with shared information across all config objects. .. py:method:: parse_actions(actions: Dict[rlgym.api.AgentID, numpy.ndarray], state: rlgym.rocket_league.api.GameState, shared_info: Dict[str, Any]) -> Dict[rlgym.api.AgentID, numpy.ndarray] Function that parses actions from the action space into a format that rlgym understands. The expected return value is a numpy float array of size (n, 8) where n is the number of agents. The second dimension is indexed as follows: throttle, steer, yaw, pitch, roll, jump, boost, handbrake. The first five values are expected to be in the range [-1, 1], while the last three values should be either 0 or 1. :param actions: An dict of actions, as passed to the `env.step` function. :param state: The GameState object of the current state that were used to generate the actions. :param shared_info: A dictionary with shared information across all config objects. :return: the parsed actions in the rlgym format. .. py:method:: make_lookup_table() :staticmethod: .. py:class:: RepeatAction(parser: rlgym.api.ActionParser[rlgym.api.AgentID, rlgym.api.ActionType, numpy.ndarray, rlgym.api.StateType, rlgym.api.ActionSpaceType], repeats=8) Bases: :py:obj:`rlgym.api.ActionParser`\ [\ :py:obj:`rlgym.api.AgentID`\ , :py:obj:`rlgym.api.ActionType`\ , :py:obj:`numpy.ndarray`\ , :py:obj:`rlgym.api.StateType`\ , :py:obj:`rlgym.api.ActionSpaceType`\ ] A simple wrapper to emulate tick skip. Repeats every action for a specified number of ticks. .. py:attribute:: parser .. py:attribute:: repeats :value: 8 .. py:method:: get_action_space(agent: rlgym.api.AgentID) -> rlgym.api.ActionSpaceType Function that returns the action space type. It will be called during the initialization of the environment. :return: The type of the action space .. py:method:: reset(agents: List[rlgym.api.AgentID], initial_state: rlgym.api.StateType, shared_info: Dict[str, Any]) -> None Function to be called each time the environment is reset. :param agents: List of AgentIDs for which this ActionParser will receive actions :param initial_state: The initial state of the reset environment. :param shared_info: A dictionary with shared information across all config objects. .. py:method:: parse_actions(actions: Dict[rlgym.api.AgentID, rlgym.api.ActionType], state: rlgym.api.StateType, shared_info: Dict[str, Any]) -> Dict[rlgym.api.AgentID, numpy.ndarray] Function that parses actions from the action space into a format that rlgym understands. The expected return value is a numpy float array of size (n, 8) where n is the number of agents. The second dimension is indexed as follows: throttle, steer, yaw, pitch, roll, jump, boost, handbrake. The first five values are expected to be in the range [-1, 1], while the last three values should be either 0 or 1. :param actions: An dict of actions, as passed to the `env.step` function. :param state: The GameState object of the current state that were used to generate the actions. :param shared_info: A dictionary with shared information across all config objects. :return: the parsed actions in the rlgym format.